壳寡糖,又叫壳聚寡糖、低聚壳聚糖,是将壳聚糖经特殊的生物酶技术(也有使用化学降解、微波降解技术的报道)降解得到的一种聚合度在2~20之间寡糖产品,分子量≤3200Da,是水溶性较好、功能作用大、生物活性高的低分子量产品。它具有壳聚糖所没有的较高溶解度,全溶于水,容易被生物体吸收利用等诸多独特的功能,其作用为壳聚糖的14倍。
壳寡糖是自然界中唯一带正电荷阳离子碱性氨基低聚糖,是动物性纤维素。壳寡糖是由来源于虾蟹壳的壳聚糖降解成的带有氨基的小分子寡糖,是聚合度2~20的糖链。
壳聚糖具有较强的抗真菌性的事实已为人熟知。Alen等人对46种真菌的抑菌实验发现壳聚糖对薄状菌属、脉孢菌属、座线孢菌属等32种真菌具有抑制作用。一般地,当壳聚糖的浓度达到100μg/mL时,即可表现出抗真菌性,且抗真菌性与壳聚糖颗粒的大小成反比。壳聚糖的聚合度对其抗真菌性有较大的影响,聚合度降低,则壳聚糖所能抑制的真菌种类减少,但抑制的程度加强。Kendra等人还发现,七聚体的壳聚糖具有最强的抗真菌性。
壳聚糖对大肠杆菌、荧光假单胞菌、金黄色葡萄球菌、枯草杆菌等有良好的抑制作用,并且还能抑制鲜活食品的生理变化。壳聚糖天然无毒,适用于偏酸性及含蛋白质少的食品保鲜,遇高分子和离子性复合物可凝集。例如水果的防腐保鲜,用量为醋酸0.1%+壳聚糖0.05%-0.1%。
壳聚糖的衍生物也有很好的抗菌性,甚至强于壳聚糖。
在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物,从而扩大了壳聚糖的应用范围。
壳聚糖大分子中有活泼的羟基和氨基,它们具有较强的化学反应能力。在碱性条件下,C6上的羟基可以发生如下反应:羟乙基化--壳聚糖与环氧乙烷进行反应,可得羟乙基化的衍生物。羧甲基化--壳聚糖与氯乙酸反应便得羧甲基化的衍生物。磺酸酯化--甲壳素和壳聚糖与纤维素一样,用碱处理后可与二硫化碳反应生成磺酸酯。氰乙基化--丙烯腈和壳聚糖可发生加成反应,生成氰乙基化的衍生物。
壳聚糖分子中具有活性的-NH2侧基,可以通过化学方法被酸化成盐、导入羟基,得到具有水溶性、醇溶性、表面活性等各种功能的壳聚糖衍生物材料。活性的-NH2.,侧基还可以先与过渡金属离子形成配合物,然后交联制备具有模板剂记忆力和选择吸附性能的壳聚糖衍生物材料,这类材料具有良好的血液相容性、生物相容性、生物官能性,在医学领域对细胞组织不产生毒性。
可以利用壳聚糖分子上的OH和-NH2:发生化学反应制备具有抑菌活性的N,O-羟甲基化壳聚糖,其中相对分子质量对抑菌活性有显著影响,如随相对分子质量的降低抑菌活性显著增强,相对分子质量低于5000时,材料对金黄色葡萄球菌抑制杀灭作用明显。壳聚糖溶于酸后,糖链上的-NH2与H+、结合成强大的正电荷阳离子基团,非常有利于改善酸性体质。
甲壳素和壳聚糖的溶解性较差,在水、普通的有机溶剂中溶解性均不好,这大大制约了这类材料的应用,然而甲壳素和壳聚糖分子链上具有多种官能团,可以对其重复单元进行化学改性,引入不同基团,得到溶解性能改善的衍生物材料,同时因为引入了不同的取代基而使甲壳素和壳聚糖衍生物材料具有各异的功能。利用壳聚糖可溶于稀酸溶液的性质可以对壳聚糖进行均相溶液反应,在不同的反应条件下,可以对重复单元中的羟基和氨基及分子链进行硅烷基化、酰化、羟基化、接枝共聚、烷基化、羧基化、主链水解等化学反应。
以下主要介绍酰化、羟基化和主链水解。
单糖
甲壳素和壳聚糖主链水解制备单糖的主要途径是化学法。对甲壳素和壳聚糖进行水解得到的最终产物是D-氨基葡萄糖单糖,D氨基葡萄糖单糖具有刺激蛋白多糖合成、辅助治疗关节炎等功能。N-乙酰氨基葡萄糖具有免疫调节、促进双歧杆菌生长、改善肠道微生态环境、治疗和预防肠道疾病等功能。甲壳素用热的浓盐酸水解可得到D-氨基葡萄糖盐酸盐,用乙酸水解可得到N-乙酰基-D-氨基葡萄糖。
低聚寡糖
甲壳素和壳聚糖的部分水解产物是低聚寡糖。化学法中通常用酸和过氧化物进行降解。如用盐酸控制条件可得到5至7糖。在适宜条件下用亚硝酸钠进行降解可得到3糖。相对分子质量分布较窄的低聚物可以采用首先将壳聚糖与铜进行配位反应,然后用过氧化氢降解的方法制备。
酶水解法是以甲壳素和壳聚糖为原材料制备低聚寡糖的一种主要方法,因为酶水解法具有专一性的特点,可以用来制备确定聚合度的低聚寡糖,尤其是高效制备二聚体以上的寡糖,如采用壳糖酶降解壳聚糖,可得到不含单糖的壳二糖到壳五糖的系列产物,这些产物再进行乙酰化可得N乙酰化甲壳寡糖。
低聚寡糖有显著的生理活性,在医药、食品、农业和化妆品领域已显示出潜在实用价值。用纤维素酶来降解壳聚糖,得到的是六糖至十糖。用排阻色谱可将壳聚糖低聚混合物中聚合度为15的低聚糖分离出来。对低聚寡糖也可进行衍生化,如将壳三糖与三甲基缩水甘油氯化铵反应,所得目标化合物有非常强的抗菌活性。
氯代烷酸或乙醛酸可以与壳聚糖上的羟基或氨基进行反应,得到相应的羧基化壳聚糖衍生物,羧甲基壳聚糖因其良好的水溶性和绿色环保性,在环保水处理、医药和化妆品等领域得到越来越广泛的应用。如N,N-二羧甲基壳聚糖磷酸钙在促进损伤骨头的修复、再生中有重要应用。氯代烷酸与壳聚糖的化学反应可以在壳聚糖的羟基和氨基上发生,得到水溶性较高的N,O-羧甲基壳聚糖,羧甲基的取代度随着壳聚糖相对分子质量的降低而增大,N,O-羧甲基壳聚糖在防止心脏手术后心包粘连、蛋白质合成与积累、玉米氮代谢等方面效果显著。
壳聚糖分子中由于含有较多的氨基,氢键作用力相对减弱,酰化反应较甲壳素容易进行。壳聚糖分子链的糖残基同时携带有羟基和氨基,可通过与一些有机酸的衍生物(酸酐、酰卤等),实现酰化改性,导入脂肪族或芳香族酰基基团,酰化反应既可在羟基上发生(O-酰化),生成酯,也可在氨基上发生(N-酰化),生成酰胺。壳聚糖具有C6-OH(一级羟基),C3-OH(二级羟基)和氨基三种基团,一般情况下,酰化反应活性是氨基的活性>一级羟基的活性>二级羟基的活性。官能团活性、反应溶剂、酰化试剂的结构、反应温度等因素均影响酰化反应的进行。氨基的反应活性比羟基大,酰化反应首先在氨基上发生,通常要想得到O-酰化的壳聚糖衍生物,需要先将壳聚糖上的氨基用醛保护起来,再进行酰化反应,反应结束后脱掉保护基。
壳聚糖的酰化反应通过引入不同相对分子质量的脂肪族或芳香族酰基进行,所得产物溶解度得到改善,性能也发生变化。如没有酰化修饰的壳聚糖分子有序度较差且抗碎强度较低,用碳链较短(如C6)的酰氯对壳聚糖分子进行N-酰化修饰,产物表现出较显著的溶胀性能,使用碳链较长(如C6-C16)的酰氯对壳聚糖分子进行N酰化修饰,产物表现出较差的溶胀性能,分子有序度以及抗碎强度得到一定的提高。在乙酸和酸酐或酰氯中进行的酰化反应,反应条件温和、反应速率较快、试剂消耗多、分子链断裂较严重。
二氯乙烷-三氯乙酸、氯化锂-二甲基乙酰胺、甲醇-乙酸等混合溶剂可以作为壳聚糖的均相反应溶剂。在使用过量酰氯的条件下,通常可以得到高取代度且分布均一的酰基化壳聚糖衍生物。甲磺酸在,一定条件下可以替代乙酸作为均相酰化反应的溶剂,它本身又有催化剂的作用,得到的酰基化壳聚糖衍生物具有较高的酰化度。取代基碳链过长将会产生显著的空间位阻效应,影响酰基化壳聚糖衍生物的取代度。
壳聚糖的酰化反应不仅发生在氨基上,也会发生在羟基上,得到具有O-酰基化结构的衍生物。通过控制反应条件可以调节酰化位置及酰化衍生物的含量,如50%N-乙酰化壳聚糖可以通过在乙酸水溶液中或在高溶胀的吡啶凝胶中得到。将水溶性甲壳素的水溶液加入到二甲基甲酰胺、吡啶等有机溶剂中,可以得到高溶胀性凝胶,这类在有机溶剂中形成的凝胶具有反应活性好、二次修饰便捷等特点。酸酐(如邻苯二甲酸酐、均苯四甲酸酐等)可以与这类高溶胀性凝胶中的壳聚糖氨基发生N-酰基化反应。
完全脱乙酰化壳聚糖经过充分溶胀后,加入到邻苯二甲酸酐的吡啶溶液中,可以得到总取代度在0.25 -1. 81之间的N,O-邻苯二甲酰化壳聚糖,这一壳聚糖衍生物溶于甲酸、二氯乙酸和二甲亚砜中,可以形成溶致液晶。
制备有确定结构的壳聚糖衍生物对于材料制备来说是至关重要的,可以得到性能更好的功能材料,如N-邻苯二甲酰化壳聚糖的选择性反应,将壳聚糖DMF悬浮液与过量的邻苯二甲酸酐加热反应,生成O,N二种邻苯二甲酰化产物,但是邻苯二甲酰胺在甲醇和钠作用下活性较高,易发生酯交换反应,O位置上的酰基离去,从而反应体系中只剩下N邻苯二甲酰壳聚糖。N-邻苯二甲酰基可用于保护壳聚糖的氨基,在壳聚糖的选择性取代反应中有重要应用。
N邻苯二甲酰壳聚糖在均相反应条件下,可进行较多的选择性修饰反应。例如,在吡啶溶剂中,将N邻苯二甲酰壳聚糖C6羟基先进行三苯甲基化保护反应,之后,C3发生乙酰化反应,最后脱去保护基得到C6的自由羟基。此反应可以在溶剂中定量进行。
用肼脱去三苯甲基化产物的邻苯二甲酰基可得到三苯甲基壳聚糖,溶解性良好,可作为反应原料进一步改性,如控制反应条件,可得到双取代和三取代的十六酰壳聚糖衍生物,产物还可以进一步磺酸化,得到一种可形成Langmuir层的两性分子。
酰化甲壳素和壳聚糖可吸附金属离子,且取代度、取代基体积对金属离子的吸附有影响,如乙酰化或壬酰化壳聚糖的取代度越低,对Cu(Ⅱ)的吸附量越大,少量酰基会破坏壳聚糖的晶体结构,占据功能基团氨基的位置较少,因而对金属的吸附量增加。辛酰基、苯酰基和月桂酰基壳聚糖衍生物对L型氨基酸比D型吸附量大,利用这一性质可以有效拆分氨基酸的旋光异构体,并且取代度越低,拆分效果越好。苯甲酰化壳聚糖薄膜,可用来分离苯-环己胺的混合物。3,4,6-三甲氧基苯甲酰甲壳素在化妆品工业中,可用于吸收紫外线、防晒护肤。磺酸化的壳聚糖衍生物在医药领域有重要用途,如C3位O-磺酸化的甲壳素衍生物,有较强的抗病毒活性,对HIV病毒有很好的抑制作用,C6位的O-磺酸基甲壳素有抗凝血功能。
因其分子中带有游离氨基,在酸性溶液中易成盐,呈阳离子性质。壳聚糖随其分子中含氨基组分数量的增多,其氨基特性更显著,这正是其独特性质所在,由此奠定了壳聚糖的许多生物学特性及加工特性的基础。
化学名:β-(1→4)-2-氨基-2-脱氧-D-葡萄糖
分子式: (C6H11NO4)n
单元体的分子量为:161.2
氨基葡萄糖是壳聚糖的基本组成单位,壳二糖是壳聚糖的基本结构的糖单元,采用壳聚糖酶自然降解壳聚糖得到的最终产物是壳二糖。
壳聚糖呈现双螺旋结构特征,螺距为0.515 nm,6个糖残基组成一个螺旋平面。甲壳素和壳聚糖的氨基、羟基、N-乙酰氨基形成的氢键,形成了甲壳素和壳聚糖大分子的二级结构。壳聚糖的氨基葡萄糖残基的椅式结构中有2种分子内氢键,一种壳聚糖分子间氢键是C3-OH与相邻的另一条壳聚糖分子链上的糖苷基形成的,另一种分子间氢键是氨基葡萄糖残基的C3-OH与相邻壳聚糖呋喃环上的氧原子形成的。甲壳素和壳聚糖的C3-OH、C2-NH2、C6-OH等官能团均可形成分子内和分子间氢键。
壳聚糖分子的基本单元是带有氨基的葡萄糖,分子内同时含有氨基、乙酰氨基和羟基,故性质比较活泼,可进行修饰、活化和偶联。壳聚糖分子链上的氨基、羟基、N-乙酰氨基等会参与分子内和分子间氢键的形成,壳聚糖具有膨润、扩散、吸附、保水、难以被人体消化吸收等长链糖分子特性,同时壳聚糖分子因为分子具有规整性在氢键作用下容易形成结晶区,这对材料的性能有很大的影响。
壳聚糖通过大分子链上分布的羟基、氨基、N-乙酰氨基相互作用形成各种分子内和分子间氢键。壳聚糖分子因为数量众多的氢键更容易形成结晶区,从而具有较高的结晶度,具有很好的吸附性、成膜性、成纤性和保湿性等物理机械性能。
壳聚糖的性质与它的聚电解质和聚糖的性质有关。大量氨基的存在允许壳聚糖与阴离子系统发生化学反应,因此这两种物质合用会引起理化性质的改变。壳聚糖作为溶液被存放和使用时,需处于酸性环境中,但由于缩醛结构的存在,使其在酸性溶液中发生降解,溶液黏度随之下降。如果加入乙醇、甲醇、丙酮等可延缓壳聚糖溶液黏度降低,以乙醇作用最明显。
本品又名脱乙酰甲壳质、可溶性甲壳素、聚氨基葡萄糖,为类白色粉末,无臭,无味。本品微溶于水,几乎不溶于乙醇。本品是一种阳离子聚胺,在pH< 6.5时电荷密度高(因此可吸附于阴离子表面并可与金属离子螯合)。本品是一种带有活泼羟基与氨基的线型聚电解质(可进行化学反应和成盐)。
纯净的壳聚糖为白色或灰白色半透明的片状固体,溶于稀酸呈黏稠状,在稀酸中壳聚糖的β -1,4-糖苷键会慢慢水解,生成低相对分子质量的壳聚糖。溶于酸性溶液形成带正电的阳离子基团。壳聚糖在溶液中是带正电荷的多聚电解质,具有很强的吸附性。壳聚糖分子中含有氨基,具有碱性,在胃酸的条件下可生成铵盐,可以使肠内pH值转为碱性,改善酸性体质。甲壳素对人体细胞有很强的亲和性,进入人体内的甲壳素被分解成基本单位。人体内存在的葡萄糖胺。而乙酰葡萄糖胺是体内透明质酸的基本组成单位。因此甲壳素和壳聚糖对人体细胞有很好的亲和性,不会产生排斥反应。
甲壳素在反应中生成带正电荷的阳离子基团,这是自然界中唯一存在的带正电荷的可食性食物纤维。甲壳素食物纤维单独食用是不易被消化吸收的,如果与牛奶、鸡蛋、蔬菜、植物性食品等一起食用就可以被吸收,这是因为在壳糖胺酶、去乙酰酶(在植物和肠内细菌中存在)、溶菌酶(体内存在)及卵磷脂(牛奶、鸡蛋中存在)等共同作用下甲壳素可以被分解成寡聚糖,低相对分子质量的寡聚糖可以被吸收,吸收部位主要在大肠。
壳聚糖的溶解性与脱乙酰度、相对分子质量、黏度有关,脱乙酰度越高,相对分子质量越小,越易溶于水;脱乙酰度越低,相对分子质量越大,黏度越大。壳聚糖具有很好的吸附性、成膜性、通透性、成纤性、吸湿性和保湿性。脱乙酰度和黏度(平均相对分子质量)是壳聚糖的两项主要性能指标。
溶解后的壳聚糖呈凝胶状态,具有较强的吸附能力。壳聚糖中含有羟基、氨基等极性基团,吸湿性很强,甲壳素的吸湿率可达400%-500%,是纤维素的两倍多,壳聚糖的吸湿性比甲壳素更强,可以用作化妆品的保湿剂。壳聚糖游离氨基的邻位为羟基,有螯合二价金属离子的作用,壳聚糖可以螯合重金属离子,作为体内重金属离子的排泄剂,是高性能的金属离子捕集剂。壳聚糖在水中长期放置会发生水解,葡萄糖环开环。壳聚糖因为具有游离氨基可以被开发作为抗原、抗体、酶等生理活性物质的固定化载体。壳聚糖由于物理、化学及生物性能良好,对有机溶剂稳定性极好,方便进行二次加工,所以壳聚糖在食品、造纸、印染、环境保护、纺织、水处理、医疗、重金属回收等方面应用前景广阔。
在虾蟹等海洋节肢动物的甲壳、昆虫的甲壳、菌类和藻类细胞膜、软体动物的壳和骨骼及高等植物的细胞壁中存在大量甲壳素。甲壳素在自然界分布广泛,储量仅居于纤维素之后,是第二大天然高分子,每年甲壳素生物合成的量约有100亿吨,是一种可循环的再生资源,取之不尽、用之不竭,这些天然聚合物的主要分布在沿海地区,印度、波兰、日本、美国、挪威和澳大利亚等国家,壳聚糖已经商业化生产。
甲壳素(chitin)首先是由法国研究自然科学史的布拉克诺(H. Bracolmot)教授于1811年在蘑菇中发现,并命名为Fungine。1823年,另一位法国科学家奥吉尔从甲壳类昆虫的翅鞘中分离出同样的物质,并命名为几丁质;1859年,法国科学家C. Rouget将甲壳素浸泡在浓KOH溶液中,煮沸一段时间,取出洗净后发现其可溶于有机酸中;1894年,德国人Ledderhose确认Rouget制备的改性甲壳素是脱掉了部分乙酰基的甲壳素,并命名为chitosan,即壳聚糖;1939年,Haworth获得了一种无争议的合成方法,确定了甲壳素的结构;1936年,美国人Rigby获得了有关甲壳素/壳聚糖的一系列授权专利,描述了从虾壳、蟹壳中分离甲壳素的方法,制备甲壳素和甲壳素衍生物的方法,制备壳聚糖溶液、壳聚糖膜和壳聚糖纤维的方法;1963年,Budall提出甲壳素存在着三种晶形;20世纪70年代,对甲壳素的研究增多;20世纪80-90年代,对甲壳素/壳聚糖研究进入全盛时代。
壳聚糖(chitosan)甲壳素N-脱乙酰基的产物,甲壳素、壳聚糖、纤维素三者具有相近的化学结构,纤维素在C2位上是羟基,甲壳素、壳聚糖在C2位上分别被一个乙酰氨基和氨基所代替,甲壳素和壳聚糖具有生物降解性、细胞亲和性和生物效应等许多独特的性质,尤其是含有游离氨基的壳聚糖,是天然多糖中唯一的碱性多糖。 [1]
壳聚糖分子结构中的氨基基团比甲壳素分子中的乙酰氨基基团反应活性更强,使得该多糖具有优异的生物学功能并能进行化学修饰反应。因此,壳聚糖被认为是比纤维素具有更大应用潜力的功能性生物材料。 [1]
壳聚糖为天然多糖甲壳素脱除部分乙酰基的产物,具有生物降解性、生物相容性、无毒性、抑菌、抗癌、降脂、增强免疫等多种生理功能,广泛应用于食品添加剂、纺织、农业、环保、美容保健、化妆品、抗菌剂、医用纤维、医用敷料、人造组织材料、药物缓释材料、基因转导载体、生物医用领域、医用可吸收材料、组织工程载体材料、医疗以及药物开发等众多领域和其他日用化学工业。 [1]